Test for divisibility by 7

Mr. Sangram Mohanty

Abstract

Normally, it becomes hard to check whether a large number is divisible by 7 ex. 757,344 . It takes a lot of time to perform actual division and checking the result. A divisibility rule called 6-9 method is designed to verify whether a given number is divisible by 7 . This method examines the digits in a number and checks whether it is divisible by 7 without performing actual division operation.

Index Terms-

(a)Black numbers
(b)Division
(c)Divisibility
(d)Extensions of 6-9 method
(e)Irreducible numbers
(f) Integer
(g)Pohlman-Mass method for divisibility by 7
(h)Unit digit

INTRODUCTION

6-9 method is a divisibility rule that checks whether a given number is divisible by 7 or not without performing actual division. The number $\mathrm{N} \in\{\mathrm{n}: \mathrm{n}$ is an integer $\}$.

A number N can be tested by following these steps as given below:-

1) The unit digit of the number was made 9 times.
2) Rest of the digits of that given number was made 6 times.
3) 9 times the unit digit of that given number was added to 6 times the rest of the digits.
4) The sum obtained was checked if it is a multiple of 7 .If it is a multiple of 7 then the original number is divisible by 7 . If not, then the number is not divisible by 7 .
5) Step 4 can be repeated as many number of times until you get a small number (sum obtained) to verify.

EXISTING TECHNIQUES-

Pohlman-mass method:

In this technique for checking the divisibility of number by 7 certain steps are followed like, the unit digit of a number is twiced and subtracted from the rest digits. The difference calculated is checked whether it is a multiple of 7 or not. If multiple then original number is divisible by 7 else not.

PROCEDURE

Method description and verification

6-9 method can be verified by taking some examples and how it is satisfied.

Example -1

91 can be verified that it is divisible by 7 as given below:-
$1^{*} 9+9^{*} 6$
$=54+9$
$=63$
63 is a multiple of 7 , hence it is verified that 91 is divisible by 7 .

Example-2

448 can be verified that it is divisible by 7 as given below:-
$8^{*} 9+44^{*} 6$
$=72+264$
$=336$

Applying step 5 we proceed for 336 like

6*9+33*6
$=54+198$
$=252$

Applying step 5 we proceed for 252 like
$2 * 9+25 * 6$
$=18+150$
$=168$
Proceeding 168 we get
$8^{*} 9+16^{*} 6$
$=72+96$
$=168$
168 is a multiple of 7 , hence 448 is a divisible by 7 .

Example-3

4879 can be verified that it is divisible by 7 as given below:-
$487^{*} 6+9^{*} 9$
$=3003$
Applying step 5 to 3003 we get
$300 * 6+3 * 9$
$=1800+27$
$=1827$
Applying step 5 to 1827 we get
$182^{*} 6+7^{*} 9$
$=1155$
Applying step 5 to 1155 we get
$115^{*} 6+5 * 9$
$=735$
Applying step 5 to 735 we get
$=483$
Applying step 5 to 483 we get
$48^{*} 6+3 * 9$
$=315$
Applying step 5 to 315 we get
$31 * 6+5 * 9$
$=186+45$
$=231$
Applying step 5 to 231 we get
$23^{*} 6+1 * 9$
$=139+9$
$=147$

Applying step 5 to 147 we get
$14^{*} 6+7^{*} 9$
$=147$
147 is a multiple of 7 , hence 4879 is divisible by 7 .

Example-4

121 can be verified that it is not divisible by 7 as given below:-
$12 * 6+1^{*} 9$
$=72+9$
$=81$
Applying step 5 to 81 we get
$8^{*} 6+1^{*} 9$
$=48+9$
$=57$
57 is not a multiple of 7 , hence 121 is not divisible by 7 .

RESULT

Extensions of 6-9 method:

It was experimented by 6-9 method that there are certain numbers those are divisible by 7 but are not reducible to smaller numbers.

Example

189 can be verified like
$9^{*} 9+18^{*} 6$
$=189$
105 can be verified like
$9 * 5+10 * 6$
$=105$
After applying 6-9 method to such numbers it was found that these numbers remains constant and are irreducible. Such numbers those are not reducible by 6-9 method to smaller numbers are called black numbers.

Only specific numbers like $\mathbf{7 , 2 1 , 4 2 , 6 3 , 8 4 , 1 0 5 , 1 2 6 , 1 4 7 , 1 6 8 , 1 8 9}$ are black numbers. These are irreducible after applying 6-9 method. These numbers can be used as multiples of 7 to verify whether a given number is divisible by 7 or not.

ACKNOWLEDGMENT

I wish thanks to my parents for kindly encouraging me to publish this research paper in IJSER journal.I also thanks to my friends Amir Ansari and Akash Kumar for giving me a good support.

CONCLUSION

This 6-9 method can be used for all integer numbers to test for divisibility by 7 .

REFERENCES

(a) Pohlman-Mass method of divisibility by 7
(b) Web reference:
http://en.wikipedia.org/wiki/Divisibility_rule

I am student of KIIT University, Bhubaneswar, Odisha, India

Permanent address: S/2-532 Niladrivihar, Bhubaneswar, Odisha, India

Pin code: 751021
Phone no.:+91-9658606140
College address: KIIT University Bhubaneswar (Odisha) India

Pin code: 751024
Mobile No: +91-7205163847, +91-8960244217
Email id:odisha532@hotmail.com

